Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;309(1):56-63.
doi: 10.1124/jpet.103.059808. Epub 2004 Jan 12.

Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception

Affiliations

Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception

S Akerman et al. J Pharmacol Exp Ther. 2004 Apr.

Abstract

Arachidonylethanolamide (anandamide, AEA) is believed to be the endogenous ligand of the cannabinoid CB(1) and CB(2) receptors. CB(1) receptors have been found localized on fibers in the spinal trigeminal tract and spinal trigeminal nucleus caudalis. Known behavioral effects of anandamide are antinociception, catalepsy, hypothermia, and depression of motor activity, similar to Delta(9)-tetrahydocannanbinol, the psychoactive constituent of cannabis. It may be a possible therapeutic target for migraine. In this study, we looked at the possible role of the CB(1) receptor in the trigeminovascular system, using intravital microscopy to study the effects of anandamide against various vasodilator agents. Anandamide was able to inhibit dural blood vessel dilation brought about by electrical stimulation by 50%, calcitonin gene-related peptide (CGRP) by 30%, capsaicin by 45%, and nitric oxide by 40%. CGRP(8-37) was also able to attenuate nitric oxide (NO)-induced dilation by 50%. The anandamide inhibition was reversed by the CB(1) receptor antagonist AM251. Anandamide also reduced the blood pressure changes caused by CGRP injection, this effect was not reversed by AM251. It would seem that anandamide acts both presynaptically, to prevent CGRP release from trigeminal sensory fibers, and postsynaptically to inhibit the CGRP-induced NO release in the smooth muscle of dural arteries. CB(1) receptors seem to be involved in the NO/CGRP relationship that exists in causing headache and dural blood vessel dilation. It also seems that some of the blood pressure changes caused by anandamide are mediated by a noncannabinoid receptor, as AM251 was unable to reverse these effects. It can be suggested that anandamide is tonically released to play some form of modulatory role in the trigeminovascular system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources