Glycolysis mutants in Saccharomyces cerevisiae
- PMID: 147195
- PMCID: PMC1213781
- DOI: 10.1093/genetics/88.1.1
Glycolysis mutants in Saccharomyces cerevisiae
Abstract
Mutants have been isolated in S. cerevisiae with the phenotype of growth on pyruvate but not on glucose, or growth on rich medium with pyruvate but inhibition by glucose. Screening of mutagenized cultures was either without an enrichment step, or after enrichment using the antibiotic netropsin (Young et al. 1976) or inositol starvation (Henry, Donahue and Culbertson 1975). One class of mutants lacked pyruvate kinase (pyk), another class had all the enzymes of glycolysis, and one mutant lacked phosphoglucose isomerase (pgi, Maitra 1971). Partial reversion of pyruvate kinase mutants on rich medium containing glucose gave double mutants now also lacking hexokinase (hxk), phosphofructokinase (fk), or several enzymes of glycolysis (gcr). In diploids the mutations were recessive. pyk, pgi, pfk, and gcr segregated 2:2 from their wild-type alleles. PYK hxk, PYK pfk, and PYK gcr segregrants grew on glucose.
Similar articles
-
Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae.Eur J Biochem. 1979 Nov;101(2):455-60. doi: 10.1111/j.1432-1033.1979.tb19739.x. Eur J Biochem. 1979. PMID: 230032
-
Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae.Biochemistry. 1979 Oct 16;18(21):4487-99. doi: 10.1021/bi00588a006. Biochemistry. 1979. PMID: 40590
-
Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae.J Bacteriol. 1979 Jul;139(1):152-60. doi: 10.1128/jb.139.1.152-160.1979. J Bacteriol. 1979. PMID: 378952 Free PMC article.
-
How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?Oncogene. 2015 Jul;34(29):3751-9. doi: 10.1038/onc.2014.320. Epub 2014 Sep 29. Oncogene. 2015. PMID: 25263450 Review.
-
Hereditary hemolytic disorders and enzymatic deficiencies of human erythrocytes.Blood. 1970 Jan;35(1):116-34. Blood. 1970. PMID: 4244328 Review. No abstract available.
Cited by
-
Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product.Mol Cell Biol. 1987 Dec;7(12):4431-40. doi: 10.1128/mcb.7.12.4431-4440.1987. Mol Cell Biol. 1987. PMID: 3125423 Free PMC article.
-
Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator.Mol Cell Biol. 1989 Nov;9(11):4696-705. doi: 10.1128/mcb.9.11.4696-4705.1989. Mol Cell Biol. 1989. PMID: 2689861 Free PMC article.
-
Sequences within an upstream activation site in the yeast enolase gene ENO2 modulate repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1.Mol Cell Biol. 1990 Sep;10(9):4863-71. doi: 10.1128/mcb.10.9.4863-4871.1990. Mol Cell Biol. 1990. PMID: 2201904 Free PMC article.
-
Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription.Mol Cell Biol. 1990 Sep;10(9):4872-85. doi: 10.1128/mcb.10.9.4872-4885.1990. Mol Cell Biol. 1990. PMID: 2201905 Free PMC article.
-
Characterization of TPI gene expression in isogeneic wild-type and gcr1-deletion mutant strains of Saccharomyces cerevisiae.Nucleic Acids Res. 1990 Dec 11;18(23):7099-107. doi: 10.1093/nar/18.23.7099. Nucleic Acids Res. 1990. PMID: 2263469 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases