Antimalarial drug toxicity: a review
- PMID: 14720085
- DOI: 10.2165/00002018-200427010-00003
Antimalarial drug toxicity: a review
Abstract
Malaria, caused mostly by Plasmodium falciparum and P. vivax, remains one of the most important infectious diseases in the world. Antimalarial drug toxicity is one side of the risk-benefit equation and is viewed differently depending upon whether the clinical indication for drug administration is malaria treatment or prophylaxis. Drug toxicity must be acceptable to patients and cause less harm than the disease itself. Research that leads to drug registration tends to omit two important groups who are particularly vulnerable to malaria--very young children and pregnant women. Prescribing in pregnancy is a particular problem for clinicians because the risk-benefit ratio is often very unclear. The number of antimalarial drugs in use is very small. Despite its decreasing efficacy against P. falciparum, chloroquine continues to be used widely because of its low cost and good tolerability. It remains the drug of first choice for treating P. vivax malaria. Pruritus is a common adverse effect in African patients. As prophylaxis, chloroquine is usually combined with proguanil. This combination has good overall tolerability but mouth ulcers and gastrointestinal upset are more common than with other prophylactic regimens. Sulfadoxine/pyrimethamine is well tolerated as treatment and when used as intermittent preventive treatment in pregnant African women. Sulfadoxine/pyrimethamine is no longer used as prophylaxis because it may cause toxic epidermal necrolysis and Stevens Johnson syndrome. Mefloquine remains a valuable drug for prophylaxis and treatment. Tolerability is acceptable to most patients and travellers despite the impression given by the lay press. Dose-related serious neuropsychiatric toxicity can occur; mefloquine is contraindicated in individuals with a history of epilepsy or psychiatric disease. Quinine is the mainstay for treating severe malaria in many countries. Cardiovascular or CNS toxicity is rare, but hypoglycaemia may be problematic and blood glucose levels should be monitored. Halofantrine is unsuitable for widespread use because of its potential for cardiotoxicity. There is renewed interest in two old drugs, primaquine and amodiaquine. Primaquine is being developed as prophylaxis, and amodiaquine, which was withdrawn from prophylactic use because of neutropenia and hepatitis, is a potentially good partner drug for artesunate against falciparum malaria. Atovaquone/proguanil is a new antimalarial combination with good efficacy and tolerability as prophylaxis and treatment. The most important class of drugs that could have a major impact on malaria control is the artemisinin derivatives. They have remarkable efficacy and an excellent safety record. They have no identifiable dose-related adverse effects in humans and only very rarely produce allergic reactions. Combining an artemisinin derivative with another efficacious antimalarial drug is increasingly being viewed as the optimal therapeutic strategy for malaria.
Similar articles
-
Antimalarial drug toxicity: a review.Chemotherapy. 2007;53(6):385-91. doi: 10.1159/000109767. Epub 2007 Oct 12. Chemotherapy. 2007. PMID: 17934257 Review.
-
Atovaquone + proguanil: new preparation. Second-line antimalarial combination.Prescrire Int. 2002 Oct;11(61):131-6. Prescrire Int. 2002. PMID: 12378742
-
Adverse effects of antimalarials. An update.Drug Saf. 1993 Apr;8(4):295-311. doi: 10.2165/00002018-199308040-00004. Drug Saf. 1993. PMID: 8481216 Review.
-
UK malaria treatment guidelines.J Infect. 2007 Feb;54(2):111-21. doi: 10.1016/j.jinf.2006.12.003. Epub 2007 Jan 9. J Infect. 2007. PMID: 17215045
-
Comparative efficacy and safety of chloroquine and alternative antimalarial drugs: a meta-analysis from six African countries.East Afr Med J. 1999 Jun;76(6):314-9. East Afr Med J. 1999. PMID: 10750517
Cited by
-
Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action.Malar J. 2012 Mar 8;11:65. doi: 10.1186/1475-2875-11-65. Malar J. 2012. PMID: 22401346 Free PMC article.
-
New 1-aryl-3-substituted propanol derivatives as antimalarial agents.Molecules. 2009 Oct 14;14(10):4120-35. doi: 10.3390/molecules14104120. Molecules. 2009. PMID: 19924051 Free PMC article.
-
The Impact of Malaria on Liver Enzymes: A Retrospective Cohort Study (2010-2017).Open Forum Infect Dis. 2019 May 16;6(6):ofz234. doi: 10.1093/ofid/ofz234. eCollection 2019 Jun. Open Forum Infect Dis. 2019. PMID: 31263731 Free PMC article.
-
Limited ability of Plasmodium falciparum pfcrt, pfmdr1, and pfnhe1 polymorphisms to predict quinine in vitro sensitivity or clinical effectiveness in Uganda.Antimicrob Agents Chemother. 2011 Feb;55(2):615-22. doi: 10.1128/AAC.00954-10. Epub 2010 Nov 15. Antimicrob Agents Chemother. 2011. PMID: 21078941 Free PMC article. Clinical Trial.
-
Comparative analysis of the safety and tolerability of fixed-dose artesunate/amodiaquine versus artemether/lumefantrine combinations for uncomplicated falciparum malaria in pregnancy: a randomized open label study.Clin Pharmacol. 2017 May 9;9:45-54. doi: 10.2147/CPAA.S131351. eCollection 2017. Clin Pharmacol. 2017. PMID: 28533699 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials