Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec 1;44(11):2175-83.
doi: 10.1016/0006-2952(92)90344-i.

The enzymology of doxorubicin quinone reduction in tumour tissue

Affiliations

The enzymology of doxorubicin quinone reduction in tumour tissue

J Cummings et al. Biochem Pharmacol. .

Abstract

We have reported previously that enzymes present in the Sp 107 rat mammary carcinoma catalyse doxorubicin quinone reduction (QR) to 7-deoxyaglycone metabolites in vivo [Willmott and Cummings, Biochem Pharmacol 36: 521-526, 1987]. In order to provide insights into the role of QR in the antitumour mechanism of action of doxorubicin, we have attempted in this work to identify the enzyme(s) responsible. NAD(P)H: (quinone acceptor) oxidoreductase (DT-diaphorase) was the major quinone reductase in the tumour accounting for approximately 70% of all the activity measured in microsomes and cytosols (microsomal activity, 28.4 +/- 4.6 nmol/min/mg; cytosolic activity, 94.3 +/- 11.9 nmol/min/mg). Its presence was confirmed by western blot analysis. Low levels of NADH cytochrome b5 reductase (15.6 +/- 6.3 nmol/min/mg) and NADPH cytochrome P450 reductase (14.5 +/- 4.0 nmol/min/mg) were detectable in microsomes. The presence of the latter was confirmed by western blot analysis. Pretreatment of tumours with doxorubicin (48 hr) at a therapeutic dose decreased the level of activity of all the reductases studied by at least 2-fold (P < 0.01, Student's t-test). Doxorubicin was shown not to be a substrate for purified rat Walker 256 tumour DT-diaphorase with either NADH or NADPH as co-factor and utilizing up to 20,000 units of enzyme/incubation but was confirmed to be a substrate for purified rat liver cytochrome P450 reductase. 7-Deoxyaglycone metabolite formation by purified cytochrome P450 reductase had an absolute requirement for NADPH as co-factor, was inhibited by molecular oxygen and dicoumarol (IC50 approx. 50 microM), and modulated by specific reductase antiserum. Reductive deglycoslation of doxorubicin to 7-deoxyaglycones was localized to the microsomal fraction of the Sp 107 tumour, with negligible activity being found in cytosols (NADH, NADPH and hypoxanthine as co-factors) and mitochondria (NADH and NADPH). The tumour microsomal enzyme had an absolute co-factor requirement for NADPH, was inhibited by oxygen and dicoumarol, and modulated by cytochrome P450 reductase antiserum. These data indicate strongly that NADPH cytochrome P450 reductase is the principal enzyme responsible for catalysing doxorubicin QR in the Sp 107 tumour.

PubMed Disclaimer

LinkOut - more resources