Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar 26;279(13):12484-94.
doi: 10.1074/jbc.M313597200. Epub 2004 Jan 12.

Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II

Affiliations
Free article
Comparative Study

Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II

Tara R Gaertner et al. J Biol Chem. .
Free article

Abstract

Ca(2+)-calmodulin-dependent protein kinase II (CaM-kinase II) is a ubiquitous Ser/Thr-directed protein kinase that is expressed from a family of four genes (alpha, beta, gamma, and delta) in mammalian cells. We have documented the three-dimensional structures and the biophysical and enzymatic properties of the four gene products. Biophysical analyses showed that each isoform assembles into oligomeric forms and their three-dimensional structures at 21-25 A revealed that all four isoforms were dodecamers with similar but highly unusual architecture. A gear-shaped core comprising the association domain has the catalytic domains tethered on appendages, six of which extend from both ends of the core. At this level of resolution, we can discern no isoform-dependent differences in ultrastructure of the holoenzymes. Enzymatic analyses showed that the isoforms were similar in their K(m) for ATP and the peptide substrate syntide, but showed significant differences in their interactions with Ca(2+)-calmodulin as assessed by binding, substrate phosphorylation, and autophosphorylation. Interestingly, the rank order of CaM binding affinity (gamma > beta > delta > alpha) does not directly correlate with the rank order of their CaM dependence for autophosphorylation (beta > gamma > delta > alpha). Simulations utilizing this data revealed that the measured differences in CaM binding affinities play a minor role in the autophosphorylation of the enzyme, which is largely dictated by the rate of autophosphorylation for each isoform.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources