Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children
- PMID: 14722170
- DOI: 10.1093/bja/aeh042
Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children
Abstract
Background: Descriptions of the pharmacokinetics and metabolism of morphine and its metabolites in young children are scant. Previous studies have not differentiated the effects of size from those related to age during infancy.
Methods: Postoperative children 0-3 yr old were given an intravenous loading dose of morphine hydrochloride (100 micro g kg(-1) in 2 min) followed by either an intravenous morphine infusion of 10 micro g h(-1) kg(-1) (n=92) or 3-hourly intravenous morphine boluses of 30 micro g kg(-1) (n=92). Additional morphine (5 micro g kg(-1)) every 10 min was given if the visual analogue (VAS, 0-10) pain score was >/=4. Arterial blood (1.4 ml) was sampled within 5 min of the loading dose and at 6, 12 and 24 h for morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The disposition of morphine and formation clearances of morphine base to its glucuronide metabolites and their elimination clearances were estimated using non-linear mixed effects models.
Results: The analysis used 1856 concentration observations from 184 subjects. Population parameter estimates and their variability (%) for a one-compartment, first-order elimination model were as follows: volume of distribution 136 (59.3) litres, formation clearance to M3G 64.3 (58.8) litres h(-1), formation clearance to M6G 3.63 (82.2) litres h(-1), morphine clearance by other routes 3.12 litres h(-1) per 70 kg, elimination clearance of M3G 17.4 (43.0) litres h(-1), elimination clearance of M6G 5.8 (73.8) litres h(-1). All parameters are standardized to a 70 kg person using allometric 3/4 power models and reflect fully mature adult values. The volume of distribution increased exponentially with a maturation half-life of 26 days from 83 litres per 70 kg at birth; formation clearance to M3G and M6G increased with a maturation half-life of 88.3 days from 10.8 and 0.61 litres h(-1) per 70 kg respectively at birth. Metabolite formation decreased with increased serum bilirubin concentration. Metabolite clearance increased with age (maturation half-life 129 days), and appeared to be similar to that described for glomerular filtration rate maturation in infants.
Conclusion: M3G is the predominant metabolite of morphine in young children and total body morphine clearance is 80% that of adult values by 6 months. A mean steady-state serum concentration of 10 ng ml(-1) can be achieved in children after non-cardiac surgery in an intensive care unit with a morphine hydrochloride infusion of 5 micro g h(-1) kg(-1) at birth (term neonates), 8.5 micro g h(-1) kg(-1) at 1 month, 13.5 micro g h(-1) kg(-1) at 3 months and 18 micro g h(-1) kg(-1) at 1 year and 16 micro g h(-1) kg(-1) for 1- to 3-yr-old children.
Similar articles
-
Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions.Br J Clin Pharmacol. 1996 Jun;41(6):531-7. doi: 10.1046/j.1365-2125.1996.03539.x. Br J Clin Pharmacol. 1996. PMID: 8799518 Free PMC article. Clinical Trial.
-
Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants.Br J Anaesth. 2003 May;90(5):642-52. doi: 10.1093/bja/aeg121. Br J Anaesth. 2003. PMID: 12697593 Clinical Trial.
-
Morphine metabolite pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates.Clin Pharmacokinet. 2006;45(7):705-14. doi: 10.2165/00003088-200645070-00005. Clin Pharmacokinet. 2006. PMID: 16802851
-
Systematic review of factors affecting the ratios of morphine and its major metabolites.Pain. 1998 Jan;74(1):43-53. doi: 10.1016/S0304-3959(97)00142-5. Pain. 1998. PMID: 9514559
-
Recommended use of morphine in neonates, infants and children based on a literature review: Part 1--Pharmacokinetics.Paediatr Anaesth. 1997;7(1):5-11. doi: 10.1046/j.1460-9592.1997.d01-30.x. Paediatr Anaesth. 1997. PMID: 9041568 Review.
Cited by
-
Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance.Br J Clin Pharmacol. 2007 Jan;63(1):75-84. doi: 10.1111/j.1365-2125.2006.02725.x. Epub 2006 Jul 21. Br J Clin Pharmacol. 2007. PMID: 16869817 Free PMC article.
-
Reduced Exposure to Piperaquine, Compared to Adults, in Young Children Receiving Dihydroartemisinin-Piperaquine as Malaria Chemoprevention.Clin Pharmacol Ther. 2019 Dec;106(6):1310-1318. doi: 10.1002/cpt.1534. Epub 2019 Jul 22. Clin Pharmacol Ther. 2019. PMID: 31173649 Free PMC article.
-
Population pharmacokinetic-pharmacodynamic modeling of clopidogrel for dose regimen optimization based on CYP2C19 phenotypes: A proof of concept study.CPT Pharmacometrics Syst Pharmacol. 2024 Jan;13(1):29-40. doi: 10.1002/psp4.13053. Epub 2023 Oct 4. CPT Pharmacometrics Syst Pharmacol. 2024. PMID: 37775990 Free PMC article.
-
Pharmacogenetic testing: Current Evidence of Clinical Utility.Ther Adv Drug Saf. 2013 Aug 1;4(4):155-169. doi: 10.1177/2042098613485595. Ther Adv Drug Saf. 2013. PMID: 24020014 Free PMC article.
-
Pediatric palliative care: use of opioids for the management of pain.Paediatr Drugs. 2009;11(2):129-51. doi: 10.2165/00148581-200911020-00004. Paediatr Drugs. 2009. PMID: 19301934 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical