Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec 31:6:72-84; discussion 84-5.
doi: 10.22203/ecm.v006a07.

Biophysical stimulation of bone fracture repair, regeneration and remodelling

Affiliations
Free article
Review

Biophysical stimulation of bone fracture repair, regeneration and remodelling

Edmund Y S Chao et al. Eur Cell Mater. .
Free article

Abstract

Biophysical stimulation to enhance bone fracture repair and bone regenerate maturation to restore its structural strength must rely on both the biological and biomechanical principle according to the local tissue environment and the type of mechanical stress to be born by the skeletal joint system. This paper reviews the possible interactions between biophysical stimuli and cellular responses in healing bone fractures and proceeds to speculate the prospects and limitations of different experimental models in evaluating and optimising such non-invasive interventions. It is important to realize that bone fracture repair has several pathways with various combinations of bone formation mechanisms, but there may only be one bone remodeling principle regulated by the hypothesis proposed by Wolff. There are different mechanical and biophysical stimuli that could provide effective augmentation of fracture healing and bone regenerate maturation. The key requirements of establishing these positive interactions are to define the precise cellular response to the stimulation signal in an in vitro environment and to use well-established animal models to quantify and optimise the therapeutic regimen in a time-dependent manner. This can only be achieved through research collaboration among different disciplines using scientific methodologies. In addition, the specific forms of biophysical stimulation and its dose effect and application timing must be carefully determined and validated. Technological advances in achieving focalized stimulus delivery with adjustable signal type and intensity, in the ability to monitor healing callus mechanical property non-invasively, and in the establishment of a robust knowledge base to develop effective and reliable treatment protocols are the essential pre-requisites to make biophysical stimulation acceptable in the main arena of health care. Finally, it is important to bear in mind that successful fracture repair or bone regeneration through callus distraction without adequate remodeling process through physiological loading would seriously undermine the value of biophysical stimulation in meeting the biomechanical demand of a long bone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources