Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 2;279(14):14065-73.
doi: 10.1074/jbc.M400171200. Epub 2004 Jan 14.

Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation

Affiliations
Free article

Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation

Russell Wallis et al. J Biol Chem. .
Free article

Abstract

Mutations in the collagen-like domain of serum mannose-binding protein (MBP) interfere with the ability of the protein to initiate complement fixation through the MBP-associated serine proteases (MASPs). The resulting deficiency in the innate immune response leads to susceptibility to infections. Studies have been undertaken to define the region of MBP that interacts with MASPs and to determine how the naturally occurring mutations affect this interaction. Truncated and modified MBPs and synthetic peptides that represent segments of the collagen-like domain of MBP have been used to demonstrate that MASPs bind on the C-terminal side of the hinge region formed by an interruption in the Gly-X-Y repeat pattern of the collagen-like domain. The binding sites for MASP-2 and for MASP-1 and -3 overlap but are not identical. The two most common naturally occurring mutations in MBP result in substitution of acidic amino acids for glycine residues in Gly-X-Y triplets on the N-terminal side of the hinge. Circular dichroism analysis and differential scanning calorimetry demonstrate that the triple helical structure of the collagen-like domain is largely intact in the mutant proteins, but it is more easily unfolded than in wild-type MBP. Thus, the effect of the mutations is to destabilize the collagen-like domain, indirectly disrupting the binding sites for MASPs. In addition, at least one of the mutations has a further effect on the ability of MBP to activate MASPs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources