Polymer membranes in clinical sensor applications. I. An overview of membrane function
- PMID: 1472593
- DOI: 10.1016/0142-9612(92)90147-g
Polymer membranes in clinical sensor applications. I. An overview of membrane function
Abstract
Polymer membranes are used in a wide variety of molecular sensing devices many of which are of potential clinical interest. The role of the polymer and the physical properties required of it are, however, rarely clearly defined. An extensive review is presented of the range of polymers whose use as membranes is described in the sensor literature. This forms the basis of an overview of membrane function in potentiometric amperometric and fibre optic sensors. In particular, the interaction of permeability, permselectivity and transmembrane potential is highlighted, together with the role of polymer membranes as matrices for the immobilization of reactive chemical and biological agents.
Similar articles
-
Polymer membranes in clinical sensor applications. III. Hydrogels as reactive matrix membranes in fibre optic sensors.Biomaterials. 1992;13(14):991-9. doi: 10.1016/0142-9612(92)90149-i. Biomaterials. 1992. PMID: 1472595 Review.
-
Polymer membranes in clinical sensor applications. II. The design and fabrication of permselective hydrogels for electrochemical devices.Biomaterials. 1992;13(14):979-90. doi: 10.1016/0142-9612(92)90148-h. Biomaterials. 1992. PMID: 1472594 Review.
-
Nanosensors based on polymer vesicles and planar membranes: a short review.J Nanobiotechnology. 2018 Aug 30;16(1):63. doi: 10.1186/s12951-018-0393-7. J Nanobiotechnology. 2018. PMID: 30165853 Free PMC article. Review.
-
Biomolecular immobilization on conducting polymers for biosensing applications.Biomaterials. 2007 Feb;28(5):791-805. doi: 10.1016/j.biomaterials.2006.09.046. Epub 2006 Oct 20. Biomaterials. 2007. PMID: 17055573 Review.
-
Covalently immobilized enzymes on biocompatible polymers for amperometric sensor applications.Biosens Bioelectron. 1996;11(4):365-73. doi: 10.1016/0956-5663(96)82732-1. Biosens Bioelectron. 1996. PMID: 8746184
Cited by
-
Formation of Thin, Isoporous Block Copolymer Membranes by an Upscalable Profile Roller Coating Process-A Promising Way to Save Block Copolymer.Membranes (Basel). 2018 Aug 6;8(3):57. doi: 10.3390/membranes8030057. Membranes (Basel). 2018. PMID: 30082598 Free PMC article.
-
A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers.Sensors (Basel). 2016 Jun 27;16(7):986. doi: 10.3390/s16070986. Sensors (Basel). 2016. PMID: 27355953 Free PMC article.
-
Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance.Prog Polym Sci. 2017 Aug;71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001. Epub 2017 Mar 12. Prog Polym Sci. 2017. PMID: 32287485 Free PMC article. Review.
-
Tailoring a Solvent-Assisted Method for Solid-Supported Hybrid Lipid-Polymer Membranes.Langmuir. 2022 May 31;38(21):6561-6570. doi: 10.1021/acs.langmuir.2c00204. Epub 2022 May 17. Langmuir. 2022. PMID: 35580858 Free PMC article.
-
Integrated Framework to Model Microstructure Evolution and Decipher the Microstructure-Property Relationship in Polymeric Porous Materials.ACS Appl Mater Interfaces. 2024 Jul 24;16(29):38442-38457. doi: 10.1021/acsami.4c03011. Epub 2024 Jul 15. ACS Appl Mater Interfaces. 2024. PMID: 39009042 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources