Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;24(4):254-78.
doi: 10.1016/j.yfrne.2003.10.002.

G-protein coupled receptor oligomerization in neuroendocrine pathways

Affiliations
Review

G-protein coupled receptor oligomerization in neuroendocrine pathways

Karen M Kroeger et al. Front Neuroendocrinol. 2003 Dec.

Abstract

Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). A growing body of biochemical and functional evidence supports the existence of GPCR-GPCR homo- and hetero-oligomers. In particular, hetero-oligomers can display pharmacological and functional properties distinct from those of the homodimer or oligomer thus adding another level of complexity to how GPCRs are activated, signal and traffick in the cell. Dimerization may also play a role in influencing the activity of agonists and antagonists. We are only beginning to unravel how and why such complexes are formed, the functional implications of which will have an enormous impact on GPCR biology. Future research that studies GPCRs as dimeric or oligomeric complexes will enhance not only our understanding of GPCRs in cellular function but will also be critical for novel drug design and improved treatment of the vast array of GPCR-related conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources