Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase
- PMID: 14727739
- DOI: 10.1002/ps.778
Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase
Abstract
We have investigated the process of evolution of target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase (ACCase) in nine French populations of black-grass (Alopecurus myosuroides Huds). To date, two different ACCase resistant alleles are known. One contains an isoleucine-to-leucine substitution at position 1781, the second contains an isoleucine-to-asparagine substitution at position 2041. Using phylogenetic analysis of ACCase sequences, we showed that 1781Leu ACCase alleles evolved from four independent origins in the nine black-grass populations studied, while 2041Asn ACCase alleles evolved from six independent origins. No geographical structure of black-grass populations was revealed. This implies that these populations, although geographically distant, are, or have until recently been, connected by gene flows. Comparison of biological data obtained from herbicide sensitivity bioassay and molecular data showed that distinct resistance mechanisms often exist in a single black-grass population. Accumulation of different resistance mechanisms in a single plant was also demonstrated. We conclude that large-scale evolution of resistance to herbicides in black-grass is a complex phenomenon, resulting from the independent selection of various resistance mechanisms in local black-grass populations undergoing contrasted herbicide and agronomical selection pressures, and connected by gene flows whose parameters remain to be determined.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources