Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 1;64(1):279-85.
doi: 10.1158/0008-5472.can-03-1168.

Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature

Affiliations

Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature

Thomas W Davis et al. Cancer Res. .

Abstract

Previous work has demonstrated that selective cyclooxygenase-2 (COX-2) inhibitors can act synergistically with radiotherapy to improve tumor debulking and control in preclinical models. The underlying mechanism of this remarkable activity has not yet been determined. Here, we report that radiation can elevate intratumoral levels of COX-2 protein and its products, particularly prostaglandin E(2) (PGE(2)). Furthermore, inhibition of COX-2 activity or neutralization of PGE(2) activity enhances radiotherapy even in tumors where COX-2 expression is restricted to the tumor neovasculature. Direct assessment of vascular function by direct contrast enhancement-magnetic resonance imaging showed that the combination of radiation and celecoxib lead to enhanced vascular permeability. These observations suggest that an important mechanism of celecoxib-induced radiosensitization involves inhibition of COX-2-derived PGE(2), thus removing a survival factor for the tumor and its vasculature.

PubMed Disclaimer

MeSH terms

LinkOut - more resources