Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;45(4):686-96.
doi: 10.1194/jlr.M300365-JLR200. Epub 2004 Jan 16.

Quantitative analysis of the expression of ACAT genes in human tissues by real-time PCR

Affiliations
Free article

Quantitative analysis of the expression of ACAT genes in human tissues by real-time PCR

Jeffery L Smith et al. J Lipid Res. 2004 Apr.
Free article

Abstract

ACAT (also called sterol o-acyltransferase) catalyzes the esterification of cholesterol by reaction with long-chain acyl-CoA derivatives and plays a pivotal role in the regulation of cholesterol homeostasis. Although two human ACAT genes termed ACAT-1 and ACAT-2 have been reported, prior research on differential tissue expression is qualitative and incomplete. We have developed a quantitative multiplex assay for each ACAT isoform after RT treatment of total RNA using TaqMan real-time quantitative PCR normalized to beta-actin in the same reaction tube. This enabled us to calculate the relative abundance of transcripts in several human tissues as an ACAT-2/ACAT-1 ratio. In liver (n = 17), ACAT-1 transcripts were on average 9-fold (range, 1.7- to 167-fold) more abundant than ACAT-2, whereas in duodenal samples (n = 10), ACAT-2 transcripts were on average 3-fold (range, 0.39- to 12.2-fold) more abundant than ACAT-1. ACAT-2 was detected for the first time in peripheral blood mononuclear cells. Interesting differences in ACAT-2 mRNA expression were evident in subgroup analysis of samples from different sources. These results demonstrate quantitatively that ACAT-1 transcripts predominate in human liver and ACAT-2 transcripts predominate in human duodenum and support the notion that ACAT-2 has an important regulatory role in liver and intestine.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources