Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;50(1):131-41.
doi: 10.1002/art.11433.

Expression profiling of metalloproteinases and their inhibitors in cartilage

Affiliations

Expression profiling of metalloproteinases and their inhibitors in cartilage

Lara Kevorkian et al. Arthritis Rheum. 2004 Jan.

Abstract

Objective: To profile the expression of all known members of the matrix metalloproteinase (MMP), ADAMTS, and tissue inhibitor of metalloproteinases (TIMP) gene families in normal cartilage and cartilage from patients with osteoarthritis (OA).

Methods: Human cartilage was obtained from femoral heads at joint replacement for OA or following fracture to the femoral neck. Total RNA was purified, and gene expression was assayed using quantitative real-time polymerase chain reaction.

Results: Several members of the above gene families were regulated in OA. Genes that showed increased expression in OA were MMP13, MMP28, and ADAMTS16 (all at P < 0.001), MMP9, MMP16, ADAMTS2, and ADAMTS14 (all at P < 0.01), and MMP2, TIMP3, and ADAMTS12 (all at P < 0.05). Genes with decreased expression in OA were MMP1, MMP3, and ADAMTS1 (all at P < 0.001), MMP10, TIMP1, and ADAMTS9 (all at P < 0.01), and TIMP4, ADAMTS5, and ADAMTS15 (all at P < 0.05). Correlation analysis revealed that groups of genes across the gene families were coexpressed in cartilage.

Conclusion: This is the first comprehensive expression profile of all known MMP, ADAMTS, and TIMP genes in cartilage. Elucidation of patterns of expression provides a foundation with which to understand mechanisms of gene regulation in OA and potentially to refine the specificity of antiproteolytic therapies.

PubMed Disclaimer

Comment in

Publication types

MeSH terms