Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 9;279(15):14509-19.
doi: 10.1074/jbc.M400349200. Epub 2004 Jan 20.

Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor

Affiliations
Free article

Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor

David J Segal et al. J Biol Chem. .
Free article

Abstract

Small molecule inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been extremely successful but are associated with a myriad of undesirable effects and require lifelong daily dosing. In this study we explore an alternative approach, that of inducing intracellular immunity using designed, zinc finger-based transcription factors. Three transcriptional repression proteins were engineered to bind sites in the HIV-1 promoter that were expected to be both accessible in chromatin structure and highly conserved in sequence structure among the various HIV-1 subgroups. Transient transfection assays identified one factor, KRAB-HLTR3, as being able to achieve 100-fold repression of an HIV-1 promoter. Specificity of repression was demonstrated by the lack of repression of other promoters. This factor was further shown to repress the replication of several HIV-1 viral strains 10- to 100-fold in T-cell lines and primary human peripheral blood mononuclear cells. Repression was observed for at least 18 days with no significant cytotoxicity. Stable T-cell lines expressing the factor also do not show obvious signs of cytotoxicity. These characteristics present KRAB-HLTR3 as an attractive candidate for development in an intracellular immunization strategy for anti-HIV-1 therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources