Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb 1;172(3):1815-24.
doi: 10.4049/jimmunol.172.3.1815.

Transcript signatures in experimental asthma: identification of STAT6-dependent and -independent pathways

Affiliations
Comparative Study

Transcript signatures in experimental asthma: identification of STAT6-dependent and -independent pathways

Nives Zimmermann et al. J Immunol. .

Abstract

The analysis of polygenic diseases such as asthma poses a challenging problem. In an effort to provide unbiased insight into disease pathogenesis, we took an empirical approach involving transcript expression profiling of lung tissue from mice with experimental asthma. Asthmatic responses were found to involve sequential induction of 4.7% of the tested genome; notably, there was ectopic expression of a series of genes not previously implicated in allergic or pulmonary responses. Genes were widely distributed throughout all chromosomes, but preferentially included genes involved in immunity, development, and homeostasis. When asthma was induced by two independent experimental regimens, unique gene transcript profiles were found depending upon the mode of disease induction. However, the majority of genes were common to both models representing an asthma signature genome. Analysis of STAT6-deficient mice revealed that an unexpectedly large segment of the asthma genes were STAT6 independent; this correlated with sustained inflammatory events in these mice. Notably, induction of asthma in STAT6-deficient mice resulted in gene induction not seen in wild-type mice. These results raise concern that therapeutic blockade of STAT6 in the asthmatic setting may reprogram the genetic signature, resulting in alternative lung pathology, which we indeed observed in STAT6-deficient mice. These results provide unprecedented insight into the complex steps involved in the pathogenesis of allergic airway responses; as such, these results have significant therapeutic and clinical implications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms