Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;1(12):2561-8.
doi: 10.1046/j.1538-7836.2003.00456.x.

Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner

Affiliations
Free article

Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner

E Biró et al. J Thromb Haemost. 2003 Dec.
Free article

Abstract

Background: Circulating microparticles of various cell types are present in healthy individuals and, in varying numbers and antigenic composition, in various disease states. To what extent these microparticles contribute to coagulation in vivo is unknown.

Objectives: To examine the in vivo thrombogenicity of human microparticles.

Methods: Microparticles were isolated from pericardial blood of cardiac surgery patients and venous blood of healthy individuals. Their numbers, cellular source, and tissue factor (TF) exposure were determined using flow cytometry. Their in vitro procoagulant properties were studied in a fibrin generation test, and their in vivo thrombogenicity in a rat model.

Results: The total number of microparticles did not differ between pericardial samples and samples from healthy individuals (P = 0.786). In both groups, microparticles from platelets, erythrocytes, and granulocytes exposed TF. Microparticle-exposed TF antigen levels were higher in pericardial compared with healthy individual samples (P = 0.036). Pericardial microparticles were strongly procoagulant in vitro and highly thrombogenic in a venous stasis thrombosis model in rats, whereas microparticles from healthy individuals were not [thrombus weights 24.8 (12.2-41.3) mg vs. 0 (0-24.3) mg median and range; P < 0.001]. Preincubation of pericardial microparticles with an inhibitory antibody against human TF abolished their thrombogenicity [0 (0-4.4) mg; P < 0.01], while a control antibody had no effect [19.6 (12.6-53.7) mg; P > 0.05]. The thrombogenicity of the microparticles correlated strongly with their TF exposure (r = 0.9524, P = 0.001).

Conclusions: Human cell-derived microparticles promote thrombus formation in vivo in a TF-dependent manner. They might be the direct cause of an increased thromboembolic tendency in various patient groups.

PubMed Disclaimer