Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 15;266(2):223-37.
doi: 10.1016/j.ydbio.2003.09.026.

Heparin-binding EGF-like growth factor regulates human extravillous cytotrophoblast development during conversion to the invasive phenotype

Affiliations
Free article

Heparin-binding EGF-like growth factor regulates human extravillous cytotrophoblast development during conversion to the invasive phenotype

Richard E Leach et al. Dev Biol. .
Free article

Abstract

Cytotrophoblasts of the anchoring villi convert during human placentation from a transporting epithelium to an invasive, extravillous phenotype that expresses a distinct repertoire of adhesion molecules. Developing extravillous trophoblasts accumulate heparin-binding EGF-like growth factor (HB-EGF), a multifunctional cytokine, which binds HER1 and HER4 of the human EGF receptor (HER/ErbB) family. HB-EGF is downregulated in placentae of women with preeclampsia, a disorder associated with deficient trophoblast invasion, raising important questions about its physiological impact on cytotrophoblasts. Addition of HB-EGF during explant culture of first-trimester chorionic villi enhanced extravillous trophoblast differentiation and invasive activity. Using a first-trimester human cytotrophoblast line, the potential for autocrine and paracrine regulation of the developing trophoblast was established based on the expression of all four HER isoforms, as well as HB-EGF and related growth factors. HB-EGF did not alter proliferation, but initiated extravillous differentiation, with decreased alpha6 integrin expression, increased alpha1, and elevated cell migration. Function-blocking antibodies against EGF family members reduced basal cell motility and antibody inhibition of either HER1 or HER4 ligation prevented HB-EGF-induced integrin switching. We conclude that HER-mediated autocrine and paracrine signaling by HB-EGF or other EGF family members induces cytotrophoblast differentiation to an invasive phenotype.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources