Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;135(2):187-95.
doi: 10.1016/j.surg.2003.08.009.

Intra-abdominal sepsis attenuates local inflammation-mediated increases in microvascular permeability at remote sites in mice in vivo

Affiliations

Intra-abdominal sepsis attenuates local inflammation-mediated increases in microvascular permeability at remote sites in mice in vivo

Lorenzo E Ferri et al. Surgery. 2004 Feb.

Abstract

Background: Given that leukocyte delivery to remote sites is diminished in states of systemic inflammation, such as sepsis, and activated leukocytes may be responsible for endothelial injury leading to vascular leakage, we hypothesized that intra-abdominal sepsis would diminish microvascular leakage at remote sites by altering leukocyte-endothelial interactions.

Methods: Using a murine intravital microscopy model, we examined leukocyte-endothelial interactions and vascular leakage at a peripheral site in the presence of local and/or systemic inflammation. Forty mice were randomized to 1 of 4 study groups: local infection (orchitis), systemic infection (intra-abdominal sepsis by cecal ligation and puncture), local and systemic infection, and control. Postcapillary venules of the cremaster muscle were examined by bright light and fluorescence intravital microscopy. Microvascular leakage was determined after intravenous administration of fluorescent albumin.

Results: Systemic infection attenuated the increases in both leukocyte adherence and local infection-induced microvascular permeability. Neutrophil cell-surface expression of L-selectin, as determined by flow cytometry, diminished with both local and systemic infection, whereas expression of CD11b increased with systemic, but not local, infection.

Conclusions: These data suggest that systemic (intra-abdominal) sepsis diminishes local inflammation-mediated vascular leakage by attenuating leukocyte adherence.

PubMed Disclaimer

Publication types