Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;86(12):4054-63.
doi: 10.3168/jds.S0022-0302(03)74017-X.

Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro

Affiliations
Free article

Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro

A Troegeler-Meynadier et al. J Dairy Sci. 2003 Dec.
Free article

Abstract

Three experiments were conducted by in vitro incubations in ruminal fluid to investigate the effects of pH and amounts of linoleic and linolenic acids on the extent of their biohydrogenation, the proportions of conjugated linoleic acid (CLA) and trans-C18:1 as intermediates, and the ratio trans-10:trans-11 intermediates. The effects of pH and amount of linoleic acid were investigated in kinetic studies, and effects of the amount of linolenic acid were studied with 6-h incubations. With identical initial amounts of linoleic acid, its disappearance declined when the mean pH during incubation was under 6.0 compared with a mean pH over 6.5, and when the amount of linolenic acid increased from 10 to 180 mg/160-ml flask, suggesting an inhibition of the isomerization step of the biohydrogenation. Low pH decreased the ratio of trans-10:trans-11 intermediates. With initial amounts of linoleic acid increasing from 100 to 300 mg, the percentage of linoleic acid disappearance declined, but the amount that disappeared increased, without modification of the trans-10:trans-11 ratio, suggesting a maximal capacity of isomerization rather than an inhibition. Moreover, increasing initial linoleic acid resulted in high amounts of trans-C18:1 and an increase of C18:0 that was a linear function of time, suggesting a maximal capacity for the second reduction step of biohydrogenation. High amounts of initial linolenic acid did not affect the amounts of CLA, trans-C18:1, or the ratio trans-10:trans-11. Based on these experiments, a ruminal pH near neutrality with high amount of dietary linoleic acid should modulate the reactions of biohydrogenation in a way that supports CLA and trans-11C18:1 in the rumen.

PubMed Disclaimer

LinkOut - more resources