Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;21(1):46-57.
doi: 10.1016/j.neuroimage.2003.09.027.

Morphological classification of brains via high-dimensional shape transformations and machine learning methods

Affiliations

Morphological classification of brains via high-dimensional shape transformations and machine learning methods

Zhiqiang Lao et al. Neuroimage. 2004 Jan.

Abstract

A high-dimensional shape transformation posed in a mass-preserving framework is used as a morphological signature of a brain image. Population differences with complex spatial patterns are then determined by applying a nonlinear support vector machine (SVM) pattern classification method to the morphological signatures. Significant reduction of the dimensionality of the morphological signatures is achieved via wavelet decomposition and feature reduction methods. Applying the method to MR images with simulated atrophy shows that the method can correctly detect subtle and spatially complex atrophy, even when the simulated atrophy represents only a 5% variation from the original image. Applying this method to actual MR images shows that brains can be correctly determined to be male or female with a successful classification rate of 97%, using the leave-one-out method. This proposed method also shows a high classification rate for old adults' age classification, even under difficult test scenarios. The main characteristic of the proposed methodology is that, by applying multivariate pattern classification methods, it can detect subtle and spatially complex patterns of morphological group differences which are often not detectable by voxel-based morphometric methods, because these methods analyze morphological measurements voxel-by-voxel and do not consider the entirety of the data simultaneously.

PubMed Disclaimer

Publication types

MeSH terms