Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;21(1):311-7.
doi: 10.1016/j.neuroimage.2003.08.030.

Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study

Affiliations

Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study

Michel Modo et al. Neuroimage. 2004 Jan.

Abstract

Preferential migration of stem cells toward the site of a lesion is a highly desirable property of stem cells that allows flexibility in the site of graft implantation in the damaged brain. In rats with unilateral stroke damage, neural stem cells transplanted into the contralateral hemisphere migrate across to the lesioned hemisphere and populate the area around the ischaemic infarct. To date, the migration of neural stem cells in the damaged brain has been mainly inferred from snapshot histological images. In this study, we demonstrate that by pre-labelling neural stem cells with the bimodal contrast agent Gadolinium-RhodamIne Dextran [GRID, detectable by both magnetic resonance imaging (MRI) and fluorescent microscopy], the transhemispheric migration of transplanted neural stem cells contralateral to a stroke lesion can be followed in vivo by serial MRI and corroborated by subsequent histological analyses. Our results indicate that neural stem cells migrated from the injection tract mainly along the corpus callosum within 7 days of transplantation and extensively re-populated the peri-lesion area by 14 days following implantation. In contrast, neural stem cells transplanted into sham controls did not show any substantial migration outside of the injection tract, suggesting that the transcallosal migration observed in the stroke-lesioned animals is due to neural stem cells being attracted by the lesion site. In vivo tracking of the migration of neural stem cells responding to damage will greatly enhance our understanding of optimal transplantation strategies as well as how neural stem cells promote functional and anatomical recovery in neurological disorders.

PubMed Disclaimer

Publication types

MeSH terms