Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 13;314(3):787-92.
doi: 10.1016/j.bbrc.2003.12.173.

In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells

Affiliations

In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells

Her Hsiung Huang. Biochem Biophys Res Commun. .

Abstract

The biocompatibility of metal implants is related to their surface electrochemical characterizations. The in situ growing process of osteoblast-like U-2 OS cells on polished Ti and Ti-6Al-4V alloy during 72h incubation was monitored using the electrochemical impedance spectroscopy (EIS) measurement technique. The results showed that the presence of cells on metals led to an increase in the impedance and polarization resistance (R(p)) of metals. The impedance and R(p) increased as the cells grew (i.e., from adhesion, spreading to proliferation period). A trace amount of V element released from Ti-6Al-4V alloy led to a lower R(p) with respect to Ti metal during cell culture. In this study, a satisfactory equivalent circuit simulating the electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with cells was proposed. The EIS measurement technique was applied successfully to monitor the in situ growing process of U-2 OS cells on Ti and Ti-6Al-4V alloy.

PubMed Disclaimer

Publication types

LinkOut - more resources