Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment
- PMID: 14742252
- PMCID: PMC1602274
- DOI: 10.1016/S0002-9440(10)63136-7
Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment
Abstract
Mechanisms that hinder ischemia-induced neovascularization in diabetes remain poorly understood. We hypothesized that endogenous bone marrow mononuclear cell (BM-MNC) dysfunction may contribute to the abrogated postischemic revascularization reaction associated with diabetes. We first analyzed the effect of diabetes (streptozotocin, 40 mg/kg) on BM-MNC pro-angiogenic potential in a model of surgically induced hindlimb ischemia. In nondiabetic animals, transplantation of BM-MNCs isolated from nondiabetic animals raised the ischemic/nonischemic angiographic score, capillary number, and blood flow recovery by 1.8-, 2.7-, and 2.2-fold, respectively, over that of PBS-injected nondiabetic animals (P < 0.05). Administration of diabetic BM-MNCs also improved the neovascularization reaction in ischemic hindlimbs of nondiabetic mice but to a lesser extent from that observed with nondiabetic BM-MNC transplantation. In diabetic mice, injection of nondiabetic BM-MNCs was still more efficient than that of diabetic BM-MNCs. Such BM-MNC dysfunction was associated with the impairment of diabetic BM-MNC capacity to differentiate into endothelial progenitor cells (EPCs) in vitro and to participate in vascular-like structure formation in a subcutaneous Matrigel plug. Placenta growth factor (PlGF) administration improved by sixfold the number of EPCs differentiated from diabetic BM-MNCs in vitro and enhanced ischemic/nonischemic angiographic score, capillary number and blood flow recovery by 1.9-, 1.5- and 1.6-fold, respectively, over that of untreated diabetic animals (P < 0.01). Endogenous BM-MNC pro-angiogenic potential was affected in diabetes. Therapeutic strategy based on PlGF administration restored such defects and improved postischemic neovascularization in diabetic mice.
Figures
References
-
- Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–395. - PubMed
-
- Silvestre JS, Mallat Z, Tamarat R, Duriez M, Tedgui A, Levy BI. Regulation of Matrix Metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis. Circ Res. 2001;89:259–264. - PubMed
-
- Mallat Z, Silvestre JS, Le Ricousse-Roussanne S, Lecomte-Raclet L, Corbaz A, Clergue M, Duriez M, Barateau V, Akira S, Tedgui A, Tobelem G, Chvatchko Y, Levy BI. Interleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb. Circ Res. 2002;91:441–448. - PubMed
-
- Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5:434–438. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
