Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;54(Pt 1):33-39.
doi: 10.1099/ijs.0.02790-0.

Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores

Affiliations

Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores

P Aguiar et al. Int J Syst Evol Microbiol. 2004 Jan.

Abstract

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99-100%) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1T, was characterized. The motile, 0.9-2.0 microm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 degrees C (optimum at 68 degrees C). The strains grew fastest in 0.1% (w/v) NaCl and at pH 6, although growth was observed from pH 5.5 to 7.0. Az-Fu1T can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0.2-9.0%, v/v) as electron acceptor. Az-Fu1T is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1T G+C content was 33.6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the Aquificales, closely related to Sulfurihydrogenibium subterraneum (2.0% distant). The 16S rRNA gene of Az-Fu1T is 7.7% different from that of Persephonella marina and 6.8% different from Hydrogenothermus marinus. Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1T belongs to the recently described genus Sulfurihydrogenibium. It is further proposed that Az-Fu1T represents a new species, Sulfurihydrogenibium azorense.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources