Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;45(2):546-51.
doi: 10.1167/iovs.03-0757.

Posture changes and subfoveal choroidal blood flow

Affiliations

Posture changes and subfoveal choroidal blood flow

Antonio Longo et al. Invest Ophthalmol Vis Sci. 2004 Feb.

Abstract

Purpose: To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers.

Methods: The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures.

Results: Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P < 0.0004), IOP increased by 29% (P < 0.001), and mean ChBF increased by 11% (P < 0.01). The increase in ChBF was primarily due to an increase in the nonpulsatile component of the blood velocity.

Conclusions: Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

PubMed Disclaimer

Similar articles

Cited by

Publication types