Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:55:27-39.
doi: 10.1146/annurev.med.55.091902.103843.

Inherited diseases involving g proteins and g protein-coupled receptors

Affiliations
Review

Inherited diseases involving g proteins and g protein-coupled receptors

Allen M Spiegel et al. Annu Rev Med. 2004.

Abstract

Heterotrimeric G proteins couple seven-transmembrane receptors for diverse extracellular signals to effectors that generate intracellular signals altering cell function. Mutations in the gene encoding the alpha subunit of the G protein-coupling receptors to stimulation of adenylyl cyclase cause developmental abnormalities of bone, as well as hormone resistance (pseudohypoparathyroidism caused by loss-of-function mutations) and hormone hypersecretion (McCune-Albright syndrome caused by gain-of-function mutations). Loss- and gain-of-function mutations in genes encoding G protein-coupled receptors (GPCRs) have been identified as the cause of an increasing number of retinal, endocrine, metabolic, and developmental disorders. GPCRs comprise an evolutionarily conserved gene superfamily ( 1 ). By coupling to heterotrimeric G proteins, GPCRs transduce a wide variety of extracellular signals including monoamine, amino acid, and nucleoside neurotransmitters, as well as photons, chemical odorants, divalent cations, hormones, lipids, peptides and proteins. Following a brief overview of G protein-coupled signal transduction, we review the growing body of evidence that mutations in genes encoding GPCRs and G proteins are an important cause of human disease.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources