Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb:53 Suppl 1:S190-2.
doi: 10.2337/diabetes.53.2007.s190.

Glucose-induced regulation of COX-2 expression in human islets of Langerhans

Affiliations

Glucose-induced regulation of COX-2 expression in human islets of Langerhans

Shanta J Persaud et al. Diabetes. 2004 Feb.

Abstract

Cyclo-oxygenase (COX), the enzyme responsible for conversion of arachidonic acid to prostanoids, exists as two isoforms. In most tissues, COX-1 is a constitutive enzyme involved in prostaglandin-mediated physiological processes, whereas COX-2 is thought to be induced by inflammatory stimuli. However, it has previously been reported that COX-2 is the dominant isoform in islets and an insulin-secreting beta-cell line under basal conditions. We have investigated the relative abundance of COX-1 and COX-2 mRNAs in MIN6 cells, a mouse insulin-secreting cell line, and in primary mouse and human islets. We found that COX-2 was the dominant isoform in MIN6 cells, but that COX-1 mRNA was more abundant than that of COX-2 in freshly isolated mouse islets. Furthermore, COX-2 expression was induced by maintenance of mouse islets in culture, and experiments with human islets indicated that exposure of the islets to hyperglycemic conditions was sufficient to upregulate COX-2 mRNA levels. Given that hyperglycemia has been reported to increase human beta-cell production of interleukin-1beta and that this cytokine can induce COX-2 expression, our observations of glucose-induced induction of COX-2 in human islets suggest that this is one route through which hyperglycemia may contribute to beta-cell dysfunction.

PubMed Disclaimer

Publication types

LinkOut - more resources