Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 15;38(2):476-83.
doi: 10.1021/es0342087.

Modeling tetracycline antibiotic sorption to clays

Affiliations

Modeling tetracycline antibiotic sorption to clays

Raquel A Figueroa et al. Environ Sci Technol. .

Abstract

Sorption interactions of three high-use tetracycline antibiotics (oxytetracycline, chlortetracycline, tetracycline) with montmorillonite and kaolinite clays were investigated undervaried pH and ionic strength conditions. Sorption edges were best described with a model that included cation exchange plus surface complexation of zwitterion forms of these compounds. Zwitterion sorption was accompanied by proton uptake, was more favorable on acidic clay, and was relatively insensitive to ionic strength effects. Calcium salts promoted oxytetracycline sorption at alkaline pHs likely by a surface-bridging mechanism. Substituent effects among the compounds in the tetracycline class had only minor effects on sorption edges and isotherms under the same solution pH and ionic strength conditions. At low ionic strength, greater sorption to montmorillonite than kaolinite was observed at all pHs tested, even after normalizing for cation exchange capacity. These results indicate that soil and sediment sorption models for tetracyclines, and other pharmaceuticals with similar chemistry, must account for solution speciation and the presence of other competitor ions in soil or sediment pore waters.

PubMed Disclaimer

Publication types

LinkOut - more resources