Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats
- PMID: 14752124
- DOI: 10.1152/japplphysiol.01252.2003
Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats
Abstract
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P </= 0.0001) and caused equal vasocontraction to maximal ACh in Sed SHR and Ex SHR. Endothelium-independent relaxation to sodium nitroprusside was similar in all groups. Protein levels of endothelial NO synthase were higher in SHR vs. WKY (P = 0.0157) and in Ex vs. Sed (P = 0.0536). Protein levels of the prooxidant NAD(P)H oxidase subunit, gp91phox, were higher in SHR vs. WKY (P < 0.0001) and were diminished in Ex vs. Sed (P = 0.0557). Levels of the antioxidant SOD-1, -2, and catalase enzymes were lower in SHR vs. WKY (all P </= 0.0005) but were not altered by Ex. Thus elevated gp91phox-dependent oxidative stress and reduced antioxidant capacity likely contributed to impaired endothelium-dependent vasorelaxation in Sed SHR. Furthermore, reduced gp91phox-dependent oxidative stress and enhanced endothelial NO synthase-derived NO likely contributed to restored endothelium-dependent vasorelaxation in Ex SHR.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
