Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase
- PMID: 14752199
- PMCID: PMC374312
- DOI: 10.1073/pnas.0308082100
Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase
Abstract
B(12)-dependent methionine synthase (MetH) is a large modular enzyme that utilizes the cobalamin cofactor as a methyl donor or acceptor in three separate reactions. Each methyl transfer occurs at a different substrate-binding domain and requires a different arrangement of modules. In the catalytic cycle, the cobalamin-binding domain carries methylcobalamin to the homocysteine (Hcy) domain to form methionine and returns cob(I)alamin to the folate (Fol) domain for remethylation by methyltetrahydrofolate (CH(3)-H(4)folate). Here, we describe crystal structures of a fragment of MetH from Thermotoga maritima comprising the domains that bind Hcy and CH(3)-H(4)folate. These substrate-binding domains are (beta alpha)(8) barrels packed tightly against one another with their barrel axes perpendicular. The properties of the domain interface suggest that the two barrels remain associated during catalysis. The Hcy and CH(3)-H(4)folate substrates are bound at the C termini of their respective barrels in orientations that position them for reaction with cobalamin, but the two active sites are separated by approximately 50 A. To complete the catalytic cycle, the cobalamin-binding domain must travel back and forth between these distant active sites.
Figures








Similar articles
-
Cobalamin-dependent methionine synthase: probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(I)alamin or cob(I)inamide.Biochemistry. 2003 Dec 16;42(49):14653-62. doi: 10.1021/bi035525t. Biochemistry. 2003. PMID: 14661978
-
Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269.Protein Sci. 2007 Aug;16(8):1588-95. doi: 10.1110/ps.072936307. Protein Sci. 2007. PMID: 17656578 Free PMC article.
-
Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.Biochemistry. 1997 Jul 1;36(26):8082-91. doi: 10.1021/bi9705164. Biochemistry. 1997. PMID: 9201956
-
Cobalamin-dependent methionine synthase: the structure of a methylcobalamin-binding fragment and implications for other B12-dependent enzymes.Curr Opin Struct Biol. 1994 Dec;4(6):919-29. doi: 10.1016/0959-440x(94)90275-5. Curr Opin Struct Biol. 1994. PMID: 7712296 Review.
-
Cobalamin-dependent methionine synthase.FASEB J. 1990 Mar;4(5):1450-9. doi: 10.1096/fasebj.4.5.2407589. FASEB J. 1990. PMID: 2407589 Review.
Cited by
-
Phylogenetic analysis of methionine synthesis genes from Thalassiosira pseudonana.Springerplus. 2015 Aug 4;4:391. doi: 10.1186/s40064-015-1163-8. eCollection 2015. Springerplus. 2015. PMID: 26251775 Free PMC article.
-
Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34.J Bacteriol. 2006 Oct;188(20):7195-204. doi: 10.1128/JB.00208-06. J Bacteriol. 2006. PMID: 17015658 Free PMC article.
-
Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis.Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14331-6. doi: 10.1073/pnas.0601420103. Epub 2006 Sep 18. Proc Natl Acad Sci U S A. 2006. PMID: 16983091 Free PMC article.
-
Conformational switching and flexibility in cobalamin-dependent methionine synthase studied by small-angle X-ray scattering and cryoelectron microscopy.Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2302531120. doi: 10.1073/pnas.2302531120. Epub 2023 Jun 20. Proc Natl Acad Sci U S A. 2023. PMID: 37339208 Free PMC article.
-
Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia muciniphila.mBio. 2020 Dec 8;11(6):e02507-20. doi: 10.1128/mBio.02507-20. mBio. 2020. PMID: 33293380 Free PMC article.
References
-
- Ludwig, M. L. & Matthews, R. G. (1997) Annu. Rev. Biochem. 66, 269-313. - PubMed
-
- Chen, L. H., Liu, M.-L., Hwang, H.-Y., Chen, L.-S., Korenberg, J. & Shane, B. (1997) J. Biol. Chem. 272, 3628-3634. - PubMed
-
- van der Put, N. M., van der Molen, E. F., Kluijtmans, L. A., Heil, S. G., Trijbels, J. M., Eskes, T. K., van Oppenraaij-Emmerzaal, D., Banerjee, R. & Blom, H. J. (1997) Q. J. Med. 90, 511-517.
-
- LeClerc, D., Campeau, E., Goyette, P., Adjalla, C. E., Christensen, B., Ross, M., Eydoux, P., Rosenblatt, D. S., Rozen, R. & Gravel, R. A. (1996) Hum. Mol. Genet. 5, 1867-1874. - PubMed
-
- Peariso, K., Goulding, C. W., Huang, S., Matthews, R. G. & Penner-Hahn, J. E. (1998) J. Am. Chem. Soc. 120, 8410-8416.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources