Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003:86:35-7.
doi: 10.1007/978-3-7091-0651-8_7.

Estimating blood-brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast-enhanced MRI

Affiliations

Estimating blood-brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast-enhanced MRI

J D Fenstermacher et al. Acta Neurochir Suppl. 2003.

Abstract

Patlak plot processing of Gd-shifted T1 relaxation-time images from a rat model of hemorrhagic transformation yielded estimates and maps of the blood-to-brain influx rate constant of Gd-DTPA (K1). The Patlak plots also produced a heretofore unrecognized parameter, the distribution space of the intravascular-Gd-shifted protons (Vp), an index of blood-to-tissue transfer of water. The K1 values for Gd-DTPA were very high for the regions of blood-brain barrier (BBB) opening and were similar to those of 14C-sucrose concurrently obtained by quantitative autoradiographic (QAR) analysis. In these same ROI's, Vp was five-fold greater than normal, which suggests that the permeability of the BBB to water was also increased. The 14C-sucrose space of distribution in the ischemic ROI's was around 8%, thus indicating a sizable interstitial space. The spatial resolving power of Gd-DTPA-deltaT1 imaging was rather good, although no match for 14C-sucrose-QAR. This study shows that quantitative deltaT1-MRI estimates of regional blood-brain transfer constants of Gd-DTPA and water distribution are possible when Patlak plots are employed to process the data. This approach may be useful for tracking the time-course of BBB barrier function in both animals and humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources