Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;68(6 Pt 2):066102.
doi: 10.1103/PhysRevE.68.066102. Epub 2003 Dec 15.

Scaling laws for the movement of people between locations in a large city

Affiliations

Scaling laws for the movement of people between locations in a large city

G Chowell et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec.

Abstract

Large scale simulations of the movements of people in a "virtual" city and their analyses are used to generate insights into understanding the dynamic processes that depend on the interactions between people. Models, based on these interactions, can be used in optimizing traffic flow, slowing the spread of infectious diseases, or predicting the change in cell phone usage in a disaster. We analyzed cumulative and aggregated data generated from the simulated movements of 1.6 x 10(6) individuals in a computer (pseudo-agent-based) model during a typical day in Portland, Oregon. This city is mapped into a graph with 181,206 nodes representing physical locations such as buildings. Connecting edges model individual's flow between nodes. Edge weights are constructed from the daily traffic of individuals moving between locations. The number of edges leaving a node (out-degree), the edge weights (out-traffic), and the edge weights per location (total out-traffic) are fitted well by power-law distributions. The power-law distributions also fit subgraphs based on work, school, and social/recreational activities. The resulting weighted graph is a "small world" and has scaling laws consistent with an underlying hierarchical structure. We also explore the time evolution of the largest connected component and the distribution of the component sizes. We observe a strong linear correlation between the out-degree and total out-traffic distributions and significant levels of clustering. We discuss how these network features can be used to characterize social networks and their relationship to dynamic processes.

PubMed Disclaimer

LinkOut - more resources