Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb;55(2):257-67.
doi: 10.1002/ana.10828.

Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia

Affiliations
Comparative Study

Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia

Norman J Haughey et al. Ann Neurol. 2004 Feb.

Abstract

Infection by the human immunodeficiency virus type 1 (HIV-1) often results in neurological dysfunction including HIV dementia (HIVD). Alterations in cytokine and redox balance are thought to play important roles in the pathogenesis of HIVD, but the specific mechanisms underlying neuronal dysfunction and death are unknown. Activation of cytokine receptors and oxidative stress can induce the production of ceramide from membrane sphingomyelin, and recent findings suggest that ceramide is an important mediator of a form of programmed cell death called apoptosis. We now report that levels of ceramide, sphingomyelin, and hydroxynonenal (HNE) are significantly increased in brain tissues and cerebrospinal fluid of HIVD patients. Exposure of cultured neurons to the neurotoxic HIV proteins gp120 and Tat resulted in increased cellular levels of sphingomyelin, ceramide, and HNE. The ceramide precursor palmitoyl-CoA sensitized neurons to Tat and gp120 toxicity, whereas an inhibitor of ceramide production reduced Tat and gp120-induced increases of ceramide and HNE and protected the neurons from Tat and gp120-induced death. These results suggest that HIV-1 infection may promote a lipid imbalance in neural cells, resulting in an overproduction of ceramide and consequent cellular dysfunction and death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources