Tissue-specific dysregulation of cortisol metabolism in equine laminitis
- PMID: 14756370
- DOI: 10.2746/0425164044864750
Tissue-specific dysregulation of cortisol metabolism in equine laminitis
Abstract
Reasons for performing study: The role of glucocorticoids (GCs) in the pathogenesis of laminitis is incompletely understood. Local tissue activity of GC is regulated by the steroid converting enzyme, 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1). Changes in integumentary (skin and hoof lamellar) 11beta-HSD activity occurring during laminitis could affect the extent to which GCs are involved in its development.
Hypothesis: That changes in integumentary 11beta-HSD-1 activity associated with the laminitic condition would lead to elevated local tissue levels of GCs, which could subsequently contribute, through paracrine and autocrine mechanisms, to the further development of laminitis; and that similar changes in 11beta-HSD-1 activity would be evident in both skin and hoof lamellar tissue.
Methods: Activity of 11beta-HSD-1 was determined in skin and hoof lamellar tissue specimens obtained from normal and laminitic horses using a radiometric assay. Skin samples were obtained from 10 normal horses and from 10 horses before and after induction of acute laminitis following administration of starch via nasogastric tube. Hoof lamellar samples were obtained from 10 normal horses, 10 horses following induction of acute laminitis and 4 chronically-foundered horses. Bidirectional 11beta-HSD-1 activity was measured in both skin and lamellar tissues.
Results: 11-ketoreductase activity exceeded 11beta-dehydrogenase activity in both skin and lamellar tissues. Cutaneous activity was higher than lamellar 11beta-HSD-1 activity in all groups. Both ketoreductase and dehydrogenase activity increased in skin and lamellae following experimental induction of acute laminitis, but the increase in ketoreductase activity was substantially greater than that for dehydrogenase in the lamellae. Induction of acute laminitis was attended by increases of 227 and 220% in cutaneous dehydrogenase and ketoreductase activity, respectively, and 173 and 398% in lamellar dehydrogenase and ketoreductase activity, respectively (P<0.05).
Conclusions: The 11-ketoreductase moiety of 11beta-HSD-1 plays a role in equine skin and hoof lamellae regarding the regulation of local glucocorticoid activity. Increased 11-ketoreductase activity will lead to increased local tissue GC activity by virtue of conversion of cortisone to cortisol.
Potential relevance: The laminitic condition is attended by integumentary biochemical changes that enhance the local concentration of cortisol, especially in the hoof lamellar interface. Through multiple and diverse actions, increased local GC activity contributes to the pathogenesis and morbidity associated with laminitis. Pharmacological manipulation of 11beta-HSD-1 deserves further investigation regarding the prevention and treatment of laminitis.
Similar articles
-
Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof.Equine Vet J. 2011 Sep;43(5):543-51. doi: 10.1111/j.2042-3306.2010.00325.x. Epub 2011 Mar 11. Equine Vet J. 2011. PMID: 21496086
-
Expression of endothelin in equine laminitis.Equine Vet J. 1999 May;31(3):243-7. doi: 10.1111/j.2042-3306.1999.tb03180.x. Equine Vet J. 1999. PMID: 10402139
-
Glucocorticoids and laminitis in the horse.Vet Clin North Am Equine Pract. 2002 Aug;18(2):219-36. doi: 10.1016/s0749-0739(02)00015-9. Vet Clin North Am Equine Pract. 2002. PMID: 15635906 Review.
-
Leukocyte-derived and endogenous matrix metalloproteinases in the lamellae of horses with naturally acquired and experimentally induced laminitis.Vet Immunol Immunopathol. 2009 Jun 15;129(3-4):221-30. doi: 10.1016/j.vetimm.2008.11.003. Epub 2008 Nov 7. Vet Immunol Immunopathol. 2009. PMID: 19101039
-
The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development.Toxicol Pathol. 2021 Oct;49(7):1294-1307. doi: 10.1177/0192623319880469. Epub 2019 Nov 19. Toxicol Pathol. 2021. PMID: 31741428 Review.
Cited by
-
Species-specific regulation of angiogenesis by glucocorticoids reveals contrasting effects on inflammatory and angiogenic pathways.PLoS One. 2018 Feb 15;13(2):e0192746. doi: 10.1371/journal.pone.0192746. eCollection 2018. PLoS One. 2018. PMID: 29447208 Free PMC article.
-
Plasma proteomics shows an elevation of the anti-inflammatory protein APOA-IV in chronic equine laminitis.BMC Vet Res. 2012 Sep 27;8:179. doi: 10.1186/1746-6148-8-179. BMC Vet Res. 2012. PMID: 23016951 Free PMC article.
-
Vascular Dysfunction in Horses with Endocrinopathic Laminitis.PLoS One. 2016 Sep 29;11(9):e0163815. doi: 10.1371/journal.pone.0163815. eCollection 2016. PLoS One. 2016. PMID: 27684374 Free PMC article.
-
Medical implications of obesity in horses--lessons for human obesity.J Diabetes Sci Technol. 2009 Jan;3(1):163-74. doi: 10.1177/193229680900300119. J Diabetes Sci Technol. 2009. PMID: 20046661 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous