Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 16;279(16):15897-907.
doi: 10.1074/jbc.M311473200. Epub 2004 Feb 2.

C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation

Affiliations
Free article

C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation

Maya Kamao et al. J Biol Chem. .
Free article

Abstract

Recently, it was revealed that 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and 24R,25-dihydroxyvitamin D3 (24,25(OH)2D3) were metabolized to their respective epimers of the hydroxyl group at C-3 of the A-ring. We now report the isolation and structural assignment of 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3 as a major metabolite of 25-hydroxyvitamin D3 (25(OH)D3) and the further metabolism of C-3 epimers of vitamin D3 metabolites. When 25(OH)D3 was incubated with various cultured cells including osteosarcoma, colon adenocarcinoma, and hepatoblastoma cell lines, 3-epi-25(OH)D3 and 24,25 (OH)2D3 were commonly observed as a major and minor metabolite of 25(OH)D3, respectively. 25(OH)D3 was at least as sensitive to C-3 epimerization as 1alpha, 25(OH)2D3 which has been reported as a substrate for the C-3 epimerization reaction. Unlike these cultured cells, LLC-PK1 cells, a porcine kidney cell line, preferentially produced 24,25(OH)2D3 rather than 3-epi-25(OH)D3. We also confirmed the existence of 3-epi-25(OH)D3 in the serum of rats intravenously given pharmacological doses of 25(OH)D3. The cultured cells metabolized 3-epi-25OHD3 and 3-epi-1alpha,25(OH)2D3 to 3-epi-24,25(OH)2D3 and 3-epi-1alpha,24,25(OH)3D3, respectively. In addition, we demonstrated that 3-epi-25(OH)D3 was metabolized to 3-epi-1alpha,25(OH)2D3 by CYP27B1 and to 3-epi-24,25(OH)2D3 by CYP24 using recombinant Escherichia coli cell systems. 3-Epi-25(OH)D3, 3-epi-1alpha,25(OH)2D3, and 3-epi-24,25(OH)2D3 were biologically less active than 25(OH)D3, 1alpha,25(OH)2D3, and 24,25(OH)2D3, but 3-epi-1alpha,25(OH)2D3 showed to some extent transcriptional activity toward target genes and anti-proliferative/differentiation-inducing activity against human myeloid leukemia cells (HL-60). These results indicate that C-3 epimerization may be a common metabolic pathway for the major metabolites of vitamin D3.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources