Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct-Dec;14(5-6):373-88.
doi: 10.1080/10629360310001623962.

Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor

Affiliations
Review

Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor

H Hong et al. SAR QSAR Environ Res. 2003 Oct-Dec.

Abstract

A large number of natural, synthetic and environmental chemicals are capable of disrupting the endocrine systems of experimental animals, wildlife and humans. These so-called endocrine disrupting chemicals (EDCs), some mimic the functions of the endogenous androgens, have become a concern to the public health. Androgens play an important role in many physiological processes, including the development and maintenance of male sexual characteristics. A common mechanism for androgen to produce both normal and adverse effects is binding to the androgen receptor (AR). In this study, we used Comparative Molecular Field Analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (3D-QSAR) technique, to examine AR-ligand binding affinities. A CoMFA model with r2 = 0.902 and q2 = 0.571 was developed using a large training data set containing 146 structurally diverse natural, synthetic, and environmental chemicals with a 10(6)-fold range of relative binding affinity (RBA). By comparing the binding characteristics derived from the CoMFA contour map with these observed in a human AR crystal structure, we found that the steric and electrostatic properties encoded in this training data set are necessary and sufficient to describe the RBA of AR ligands. Finally, the CoMFA model was challenged with an external test data set; the predicted results were close to the actual values with average difference of 0.637 logRBA. This study demonstrates the utility of this CoMFA model for real-world use in predicting the AR binding affinities of structurally diverse chemicals over a wide RBA range.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources