Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 11;126(5):1526-36.
doi: 10.1021/ja0386795.

Encapsulation of transition metal catalysts by ligand-template directed assembly

Affiliations

Encapsulation of transition metal catalysts by ligand-template directed assembly

Vincent F Slagt et al. J Am Chem Soc. .

Abstract

Encapsulated transition metal catalysts are presented that are formed by templated self-assembly processes of simple building blocks such as porphyrins and pyridylphosphine and phosphite ligands, using selective metal-ligand interactions. These ligand assemblies coordinate to transition metals, leading to a new class of transition metal catalysts. The assembled catalyst systems were characterized using NMR and UV-vis spectroscopy and were identified under catalytic conditions using high-pressure infrared spectroscopy. Tris-3-pyridylphosphine binds three mesophenyl zinc(II) porphyrin units and consequently forms an assembly with the phosphorus donor atom completely encapsulated. The encapsulated phosphines lead exclusively to monoligated transition metal complexes, and in the rhodium-catalyzed hydroformylation of 1-octene the encapsulation of the catalysts resulted in a 10-fold increase in activity. In addition, the branched aldehyde was formed preferentially (l/b = 0.6), a selectivity that is highly unusual for this substrate, which is attributed to the encapsulation of the transition metal catalysts. An encapsulated rhodium catalyst based on ruthenium(II) porphyrins and tris-meta-pyridyl phosphine resulted in an even larger selectivity for the branched product (l/b = 0.4). These encapsulated catalysts can be prepared easily, and various template ligands and porphyrins, such as tris-3-pyridyl phosphite and ruthenium(II) porphyrins, have been explored, leading to catalysts with different properties.

PubMed Disclaimer

LinkOut - more resources