Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Apr;55(2):147-56.
doi: 10.1016/j.chemosphere.2003.10.064.

Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters

Affiliations
Comparative Study

Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters

Angela Ivask et al. Chemosphere. 2004 Apr.

Abstract

Environmental hazard of heavy metals in soils depends to a large extent on their bioavailability. The approach used in this study enables the determination of bioavailable metals in solid-phase samples. Two recombinant bacterial sensors, one responding specifically to cadmium and the other to lead and cadmium by increase of luminescence (firefly luciferase was used as a reporter) were used to determine the bioavailability of these metals in soil-water suspensions (a contact assay) and respective particle-free extracts. Fifty agricultural soils sampled near zinc and lead smelters in the Northern France containing up to (mg/kg) 20.1 of Cd, 1050 of Pb and 1390 of Zn were analysed. As the soil matrix interferes with the assay, recombinant luminescent control bacteria lacking the metal recognizing protein and corresponding promoter (thus, being not metal-inducible) but otherwise comparable to the sensor bacteria (the same host bacterium and plasmid encoding luciferase) were used in parallel to take into account the possible quenching and/or stimulating effects of the sample on the luminescence of the sensor bacteria. Both, chemical and sensor analysis showed that only microg/l levels of metals were extracted from the soil into the water phase (0.1% of the total Cd, 0.07% of Pb and 0.5% of Zn). However, 115-fold more Cd and 40-fold more Pb proved bioavailable if the sensor bacteria were incubated in soil suspensions (i.e., in the contact assay). The bioavailability of metals in different soils varied (depending probably on soil type) ranging from 0.5% to 56% for cadmium and from 0.2% to 8.6% for lead.

PubMed Disclaimer

Publication types

LinkOut - more resources