Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;309(3):1174-82.
doi: 10.1124/jpet.103.063651. Epub 2004 Feb 4.

Cooperation between aspirin-triggered lipoxin and nitric oxide (NO) mediates antiadhesive properties of 2-(Acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester (NCX-4016) (NO-aspirin) on neutrophil-endothelial cell adherence

Affiliations

Cooperation between aspirin-triggered lipoxin and nitric oxide (NO) mediates antiadhesive properties of 2-(Acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester (NCX-4016) (NO-aspirin) on neutrophil-endothelial cell adherence

Stefano Fiorucci et al. J Pharmacol Exp Ther. 2004 Jun.

Expression of concern in

  • Editorial expression of concern.
    [No authors listed] [No authors listed] J Pharmacol Exp Ther. 2009 May;329(2):848. J Pharmacol Exp Ther. 2009. PMID: 19389939 No abstract available.

Abstract

2-(Acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester (NCX-4016) is a nitric oxide (NO)-releasing derivative of aspirin that inhibits cyclooxygenase (COX) activity and releases NO. Acetylation of COX-2 by aspirin activates a transcellular biosynthetic pathway that switches eicosanoid biosynthesis from prostaglandin E(2) to 15-epi-lipoxin (LX)A(4) or aspirin-triggered lipoxin (ATL). Here, we demonstrate that exposure of neutrophil (PMN)/human umbilical vein endothelial cell (HUVEC) cocultures to aspirin and NCX-4016 triggers ATL formation and inhibits cell-to-cell adhesion induced by endotoxin (LPS) and interleukin (IL)-1beta by 70 to 90%. However, although selective and nonselective COX-2 inhibitors (celecoxib, rofecoxib, and naproxen) or N-t-butoxycarbonylmethionine-leucine-phenylalanine (Boc-1), an LXA(4) receptor antagonist, reduced the antiadhesive properties of aspirin by approximately 70%, antiadhesive effects of NCX-4016 were only marginally affected ( approximately 30%) by COX inhibitors and Boc-1, implying that COX-independent mechanisms mediate the antiadhesive properties of NCX-4016. Indeed, NCX-4016 causes a long-lasting (up to 12 h) release of NO and cGMP accumulation in HUVEC. Scavenging NO with 10 mM hemoglobin, in the presence of celecoxib, reduced the antiadhesive properties of NCX-4016 by approximately 80%. Confirming a role for NO, the NO donor diethylenetriamine-NO also inhibited PMN/HUVEC adhesion by approximately 80%. NCX-4016, but not aspirin, decreased DNA binding of nuclear factor-kappaB (NF-kappaB) on gel shift analysis and HUVEC's overexpression of CD54 and CD62E induced by LPS/IL-1beta. Reduction of binding of the two NF-kappaB subunits p50-p50 and p50-p65 was reversed by dithiothreitol, implying S-nitrosylation as mechanism of inhibition. In summary, our results support that ATL and NO are formed at the PMN/HUVEC interface after exposure to NCX-4016 and mediate the antiadhesive properties of this compound.

PubMed Disclaimer

MeSH terms

LinkOut - more resources