Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb 5;23(5):1125-35.
doi: 10.1038/sj.onc.1207023.

IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo

Affiliations
Comparative Study

IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo

Peter K M Kim et al. Oncogene. .

Abstract

Interferon regulatory factor-1 (IRF-1) is a nuclear transcription factor that mediates interferon and other cytokine effects and appears to have antitumor activity in vitro and in vivo in cancer cells. We have constructed a recombinant adenoviral vector (Ad-IRF-1) that infects mammary cells with high efficiency and results in high levels of functional IRF-1 protein in transfected cells. Overexpression of IRF-1 in two mouse breast cancer cell lines, C3-L5 and TS/A, resulted in apoptosis in these cell lines as assessed by Annexin V staining. The involvement of caspases was confirmed by significant inhibition of apoptosis by a caspase inhibitor, and by demonstration of caspase-3 activity, cleavage of caspase-3, and PARP cleavage. Interestingly, the growth of nonmalignant breast cell lines C127I and NMuMG did not appear to be inhibited by IRF-1 overexpression. Suppression of growth for breast cancer cell lines in vivo was demonstrated by both preinfection of breast cancer cells ex vivo and by intratumoral injection of Ad-IRF-1 into established tumors in their natural hosts. The mechanism of apoptosis may involve the transcriptional upregulation of bak, caspase-8, and caspase-7 expression. These data support the antitumor potential of IRF-1 and the use of agents that increase IRF-1 in breast cancer.

PubMed Disclaimer

Publication types

MeSH terms