Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan-Feb;20(1):207-14.
doi: 10.1021/bp0300319.

A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent

Affiliations
Comparative Study

A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent

Songping Zhang et al. Biotechnol Prog. 2004 Jan-Feb.

Abstract

A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.

PubMed Disclaimer

LinkOut - more resources