Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 15;172(4):2076-83.
doi: 10.4049/jimmunol.172.4.2076.

Mechanisms governing B cell developmental defects in invariant chain-deficient mice

Affiliations

Mechanisms governing B cell developmental defects in invariant chain-deficient mice

Kamel Benlagha et al. J Immunol. .

Abstract

Invariant chain (Ii)-deficient mice exhibit profound B cell defects that have remained poorly understood, because they could not be simply explained by impaired Ag presentation. We found that Ii deficiency induced cell autonomous defects of two distinct B cell lineages. The life span of mature follicular (FO) B cells was reduced, accounting for their markedly decreased frequency, whereas, in contrast, marginal zone (MZ) B cells accumulated. Other Ii-expressing lineages such as B1 B cells and dendritic cells were unaffected. Surprisingly, the life span of FO B cells was fully corrected in Ii/I-Abeta doubly deficient mice, revealing that Ii-free I-Abeta chains alter FO B cell survival. In contrast, the accumulation of MZ B cells was controlled by a separate mechanism independent of I-Abeta. Interestingly, in Ii-deficient mice lacking FO B cells, the MZ B cells invaded the FO zone, suggesting that intact follicules contribute to the retention of B cells in the MZ. These findings reveal unexpected consequences of Ii deficiency on the development and organization of B cell follicles.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources