Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb;51(2):380-4.
doi: 10.1109/TBME.2003.820386.

Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors

Affiliations
Comparative Study

Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors

J I Godino-Llorente et al. IEEE Trans Biomed Eng. 2004 Feb.

Abstract

It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

PubMed Disclaimer

Similar articles

Cited by