Electrotransformation of Clostridium thermocellum
- PMID: 14766568
- PMCID: PMC348934
- DOI: 10.1128/AEM.70.2.883-890.2004
Electrotransformation of Clostridium thermocellum
Abstract
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 +/- 0.5) x 10(5) transformants per micro g of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 +/- 1.8) x 10(4) transformants per micro g of plasmid DNA for strain ATCC 27405 and approximately 1 x 10(3) transformants per micro g of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was approximately 50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.
Figures






Similar articles
-
Electrotransformation of Clostridium thermosaccharolyticum.J Ind Microbiol. 1996 Jun;16(6):342-7. doi: 10.1007/BF01570112. J Ind Microbiol. 1996. PMID: 8987491
-
Optimization of electrotransformation conditions for Propionibacterium acnes.J Microbiol Methods. 2008 Jan;72(1):38-41. doi: 10.1016/j.mimet.2007.10.013. Epub 2007 Nov 17. J Microbiol Methods. 2008. PMID: 18077027
-
Electrotransformation of Clostridium acetobutylicum ATCC 824 using high-voltage radio frequency modulated square pulses.J Appl Microbiol. 2000 Feb;88(2):220-7. doi: 10.1046/j.1365-2672.2000.00032.x. J Appl Microbiol. 2000. PMID: 10735989
-
Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792.Appl Microbiol Biotechnol. 1998 Nov;50(5):564-7. doi: 10.1007/s002530051335. Appl Microbiol Biotechnol. 1998. PMID: 9866174
-
Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB).J Microbiol Methods. 2020 Jul;174:105944. doi: 10.1016/j.mimet.2020.105944. Epub 2020 May 15. J Microbiol Methods. 2020. PMID: 32417130 Review.
Cited by
-
Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.BMC Microbiol. 2012 Sep 21;12:214. doi: 10.1186/1471-2180-12-214. BMC Microbiol. 2012. PMID: 22994686 Free PMC article.
-
Elimination of formate production in Clostridium thermocellum.J Ind Microbiol Biotechnol. 2015 Sep;42(9):1263-72. doi: 10.1007/s10295-015-1644-3. Epub 2015 Jul 11. J Ind Microbiol Biotechnol. 2015. PMID: 26162629 Free PMC article.
-
Atypical glycolysis in Clostridium thermocellum.Appl Environ Microbiol. 2013 May;79(9):3000-8. doi: 10.1128/AEM.04037-12. Epub 2013 Feb 22. Appl Environ Microbiol. 2013. PMID: 23435896 Free PMC article.
-
Selective methanol or formate production during continuous CO₂ fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool.World J Microbiol Biotechnol. 2013 Sep;29(9):1611-23. doi: 10.1007/s11274-013-1324-2. Epub 2013 Mar 22. World J Microbiol Biotechnol. 2013. PMID: 23519429
-
Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory.Microb Cell Fact. 2010 Nov 22;9:89. doi: 10.1186/1475-2859-9-89. Microb Cell Fact. 2010. PMID: 21092203 Free PMC article. Review.
References
-
- Anderson, K. L., J. A. Megehee, and V. H. Varel. 1998. Conjugal transfer of transposon Tn1545 into the cellulolytic bacterium Eubacterium cellulosolvens. Lett. Appl. Microbiol. 26:35-37. - PubMed
-
- Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8:548-557. - PubMed
-
- Cato, E. P., W. L. George, and S. M. Finegold. 1986. Clostridium thermocellum Vilojen, Fred and Peterson 1926, 7AL, p. 1160-1197. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's manual of systematic bacteriology, 2nd ed., vol. 2. Williams & Wilkins, Baltimore, Md.
-
- Chen, C.-K., C. M. Boucle, and H. P. Blaschek. 1996. Factors involved in the transformation of previously non-transformable Clostridium perfringens type B. FEMS Microbiol. Lett. 140:185-191. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials