Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium
- PMID: 14766596
- PMCID: PMC348896
- DOI: 10.1128/AEM.70.2.1123-1128.2004
Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium
Abstract
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 micromol kg(-1)), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 micromol kg(-1)), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 micromol kg(-1)), and traces of NDAB (3.8 micromol kg(-1)). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 +/- 22 micromol kg(-1)) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.
Figures





Similar articles
-
Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.Appl Environ Microbiol. 2005 Aug;71(8):4199-202. doi: 10.1128/AEM.71.8.4199-4202.2005. Appl Environ Microbiol. 2005. PMID: 16085803 Free PMC article.
-
Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway.Environ Sci Technol. 2004 Aug 1;38(15):4130-3. doi: 10.1021/es049671d. Environ Sci Technol. 2004. PMID: 15352451
-
Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway.Environ Sci Technol. 2010 Dec 15;44(24):9330-6. doi: 10.1021/es1023724. Epub 2010 Nov 24. Environ Sci Technol. 2010. PMID: 21105645
-
Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine.J Microbiol Biotechnol. 2012 Oct;22(10):1311-23. doi: 10.4014/jmb.1203.04002. J Microbiol Biotechnol. 2012. PMID: 23075780 Review.
-
A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation.Chemosphere. 2022 May;294:133641. doi: 10.1016/j.chemosphere.2022.133641. Epub 2022 Jan 22. Chemosphere. 2022. PMID: 35077733 Review.
Cited by
-
Activity assays of NnlA homologs suggest the natural product N-nitroglycine is degraded by diverse bacteria.Beilstein J Org Chem. 2024 Apr 17;20:830-840. doi: 10.3762/bjoc.20.75. eCollection 2024. Beilstein J Org Chem. 2024. PMID: 38655556 Free PMC article.
-
Genome Shuffling of Stenotrophomonas maltophilia OK-5 for Improving the Degradation of Explosive RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine).Curr Microbiol. 2017 Feb;74(2):268-276. doi: 10.1007/s00284-016-1179-5. Epub 2016 Dec 22. Curr Microbiol. 2017. PMID: 28004139
-
Reduction of a Heme Cofactor Initiates N-Nitroglycine Degradation by NnlA.Appl Environ Microbiol. 2022 Aug 23;88(16):e0102322. doi: 10.1128/aem.01023-22. Epub 2022 Aug 2. Appl Environ Microbiol. 2022. PMID: 35916514 Free PMC article.
-
Heterogeneous Fenton-Like Catalysis of Electrogenerated H2O2 for Dissolved RDX Removal.Front Chem Eng. 2022;4:864816. doi: 10.3389/fceng.2022.864816. Epub 2022 May 3. Front Chem Eng. 2022. PMID: 37201172 Free PMC article.
-
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents.Toxics. 2025 Jul 31;13(8):656. doi: 10.3390/toxics13080656. Toxics. 2025. PMID: 40863933 Free PMC article.
References
-
- Ampleman, G., S. Thiboutot, J. Lavigne, A. Marois, J. Hawari, A. M. Jones, and D. Rho. 1995. Synthesis of 14C-labelled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), nitrocellulose (NC) and glycidylazide polymer (GAP) for use in assessing the biodegradation potential of these energetic compounds. J. Label. Compd. Radiopharm. 36:559-577.
-
- Balakrishnan, V., A. Halasz, and J. Hawari. 2003. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ. Sci. Technol. 37:1838-1843. - PubMed
-
- Bayman, P., S. D. Ritchey, and J. W. Bennett. 1995. Fungal interactions with the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). J. Ind. Microbiol. 15:418-423.
-
- Beller, H. R., and K. Tiemeier. 2002. Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Environ. Sci. Technol. 36:2060-2066. - PubMed
-
- Bhushan, B., A. Halasz, J. Spain, S. Thiboutot, G. Ampleman, and J. Hawari. 2002. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ. Sci. Technol. 36:3104-3108. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous