Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec;184(2):758-66.
doi: 10.1016/S0014-4886(03)00294-2.

Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice

Affiliations
Comparative Study

Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice

Gerhard Asmussen et al. Exp Neurol. 2003 Dec.

Abstract

This study focuses on the effects of neuromuscular hyperactivity on the contractile properties, fiber type composition, and myosin heavy chain (MHC) isoform expression of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles in Japanese waltzing mice (JWM) of the C57BL/6J-v2J strain. The same properties were studied in the homologous muscle of control CBA/J mice (CM). In comparison to CM, the JWM exhibited (i) longer activity periods, prolonged bouts of running and a higher food intake, (ii) slower twitch and tetanic contractions of both EDL and SOL muscles, decreased cold and post-tetanic potentiation of the EDL, as well as increased cold and post-tetanic depressions of the SOL. Electrophoretic analyses of MHC isoform revealed a shift toward slower isoforms in both EDL and SOL muscles of JWM as compared to the homologous muscles of CM, namely, a shift from the fastest MHCIIb to the MHCIId/x isoform in the EDL muscle and a shift from MHCIIa to MHCI in the SOL muscle. The latter also contained a higher percentage of type I fibers and displayed a higher capillary density than the SOL muscle of CM. These findings show that the inherently enhanced motor activity of the JWM leads to fiber type transitions in the direction of slower phenotypes. JWM thus represent a suitable model for studying fast-to-slow fiber transitions under the influence of spontaneous motor hyperactivity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources