Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;10(3):310-5.
doi: 10.1038/nm996. Epub 2004 Feb 8.

Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis

Affiliations

Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis

Jehangir S Wadia et al. Nat Med. 2004 Mar.

Abstract

The TAT protein transduction domain (PTD) has been used to deliver a wide variety of biologically active cargo for the treatment of multiple preclinical disease models, including cancer and stroke. However, the mechanism of transduction remains unknown. Because of the TAT PTD's strong cell-surface binding, early assumptions regarding cellular uptake suggested a direct penetration mechanism across the lipid bilayer by a temperature- and energy-independent process. Here we show, using a transducible TAT-Cre recombinase reporter assay on live cells, that after an initial ionic cell-surface interaction, TAT-fusion proteins are rapidly internalized by lipid raft-dependent macropinocytosis. Transduction was independent of interleukin-2 receptor/raft-, caveolar- and clathrin-mediated endocytosis and phagocytosis. Using this information, we developed a transducible, pH-sensitive, fusogenic dTAT-HA2 peptide that markedly enhanced TAT-Cre escape from macropinosomes. Taken together, these observations provide a scientific basis for the development of new, biologically active, transducible therapeutic molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms