ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork
- PMID: 147874
ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork
Abstract
Hydrolysis of ATP by rep protein proceeds in the presence of a single-stranded region of DNA 4 residues long, but the true effector for rep ATPase appears to be a replicating fork rather than a random coil. At or near a fork in duplex DNA, rep ATPase action is different from what it is on DNA lacking secondary structure (single-stranded): (i) Km for ATP is lower, (ii) specificity is for ATP and dATP with no action on other nucleoside triphosphates, (iii) sensitivity to certain ATP analogs is reduced, (iv) presence of a DNA-nicking enzyme (e.g. cistron A protein induced by phiX174) is required, and (v) Escherichia coli DNA binding protein facilitates rather than inhibits. During the separation of strands accompanying replication, 2 molecules of nucleoside triphosphate (ATP or dATP) are hydrolyzed for every nucleotide polymerized. Utilization of ATP by rep protein may provide energy for catalytic strand separation at a fork in advance of replication.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
