Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;138(10):2007-14.
doi: 10.1099/00221287-138-10-2007.

Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli

Affiliations

Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli

R J Kadner et al. J Gen Microbiol. 1992 Oct.

Abstract

The Escherichia coli uhp T gene encodes an active transport system for sugar phosphates. When the uhp T gene was carried on a multicopy plasmid, amplified levels of transport activity occurred, and growth of these strains was inhibited upon the addition of various sugar phosphates. Two different mechanisms for this growth inhibition were distinguished. Exposure to glucose-6-phosphate, fructose-6-phosphate or mannose-6-phosphate, which enter directly into the glycolytic pathway, resulted in cessation of growth and substantial loss of viability. Cell killing was correlated with the production of the toxic metabolite, methylglyoxal. In contrast, addition of 2-deoxyglucose-6-phosphate, galactose-6-phosphate, glucosamine-6-phosphate or arabinose-5-phosphate, which do not directly enter the glycolytic pathway, resulted in growth inhibition without engendering methylglyoxal production or cell death. Inhibition of growth could result from excessive accumulation of organophosphates in the cell or depletion of inorganic phosphate pools as a result of the sugar-P/Pi exchange process catalysed by UhpT. The phosphate-dependent uptake of glycerol-3-phosphate by the GlpT antiporter was strongly inhibited under conditions of elevated sugar-phosphate transport. There are thus two separate toxic effects of elevated sugar-phosphate transport, one of which was lethal and related to increased flux through glycolysis. It is likely that the control of uhpT transcription by catabolite repression exists to limit the level of UhpT transport activity and thereby prevent the toxic events that result from elevated uptake of its substrates.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources